Descriptif ED-SPU8 Theoretical aspects of neutrino astrophysics

- durée total des cours : 10 h
- 5 matinées (10h-12h30) les 14-15 et 17-18 mai 2018 au laboratoire APC,
salle 351A le 14, 15 et 17 mai et salle 412B le 18 mai.

Description:

The course will focus on forefront aspects of neutrino physics and astrophysics. They will comprise lectures of 2h30 each, covering four main chapters.

General framework : Recent developments in neutrino physics, status and open questions. Neutrino oscillations in vacuum and in matter - the Mikheev-Smirnov-Wolfenstein effect and applications to the Sun, to the Earth and core-collapse supernovae

Neutrino flavor conversion phenomena  : density matrix and effective spins formalisms, evolution equations describing neutrino propagation in astrophysical and cosmological environments, mean-field approximation, link to many body systems such as condensed matter and atomic nuclei

Neutrinos in dense media - core-collapse supernovae and accretion disks around compact systems (black holes or binary neutron star mergers): neutrino self-interaction and novel collective conversion phenomena, link to the supernova dynamics and to r-process nucleosynthesis, interplay with unknown neutrino properties, sterile neutrinos and/or non-standard interactions

Future observations : neutrinos from core-collapse supernovae and the diffuse supernova neutrino background, aspects of low-energy neutrino-nucleus cross sections, general conclusions