Non linear dynamics in geosystems and reduced complexity models

Clément Narteau, Maître de Conférences Frédéric Perrier, Professeur

A tribute to Claude Allègre and Jean-Louis Le Mouël

Advances in physics since the early twentieth century have shown how systems of coupled non-linear equations and reduced complexity models can effectively reproduce the dynamics of natural systems. Geophysical applications, originally proposed by Claude Allègre and Jean-Louis Le Mouël in IPGP, have multiplied in recent years, and these methods are now used routinely in many research laboratories, and have covered a wide range of phenomena, from the Deep Earth to Environmental systems and the Critical Zone. Here, based on these methods, we present an introduction to the concepts of complexity in geophysics and geochemistry.

The basics of the methods will be recalled for both M2 and ED students. Practice and applications will take place during the classes. Validation for M2 students will require participation and written exam. Validation for doctoral students will require participation and the detailed presentation (oral or written) of a case related to the subject of the thesis.

Course Sequence (revised)

	Universality of non-linear processes in geophysics at various scales. From
Lecture 1 (FP) Jeudi 20 septembre 2018 14h-18h	the Earth core to surface phenomena. From the laboratory to planets.
	Instabilities in underground systems, bifurcations, states and state jumps.
	Vorticity changes in fluids. Elementary non-linearities in physics and in
	geophysics: Boussinesq and Richards equations. Non-linear oscillators and
	relaxation oscillators. Relaxation oscillators in natural systems. The ideas of
	Yves Rocard: a pioneer of XXIst century geoscience.
	The Van der Pol equation and its properties. Solutions versus values of
	friction parameter. Analytical derivation of period, amplitude, period versus
	friction, and higher harmonic term.
Lecture 2 (FP) Jeudi 27 septembre 2018 16h-19h	From linear to non-linear systems. The Van der Pol oscillator with constant
	forcing. The forced Van der Pol oscillator. Mixed Modes Oscillations,
	quasiperiodicity, spiking, bursting, canards explosion and chaos. Non-linear
	stiffness: The Van-der-Pol Duffing equation and overview of properties. The
	stochastic Van der Pol equation. The Liénard equation and the Linéard
	graphical integration method. Non-Linear Differential systems. Autonomous
	systems. Introduction to the non-linear systems toolbox.

Lecture 3 (FP) Jeudi 4 octobre 2018 16h-19h	From non-linearity to bifurcations. A useful tool: revision of adaptive
	Runge-Kutta integration. Example with Rössler system. Revision of simple
	and Lyapupov factors. Example with non-linearized simple pendulum and a
	simple predator-prev model. Properties of normal modes: nodes, saddle and
	focus points. Trajectories in phase space and Poincaré sections. Dissipation in
	phase space Existence and unicity of solutions: Cauchy-Lipschitz theorem
	Example of non-unicity and blox up. One-dimensional non-lienarities and
	instabilities: normal forms and saddle-node, transcritical, supercritical and
	subcritical pitchfork bifurcations.
Lecture 4 (FP) Jeudi 11 octobre 2018 16h-18h	From non-linearity to chaos. Example of stabilizing term and hysteresis.
	Two-dimensional bifrucations. Example of two-dimensional saddle-node and
	supercritical. Hopf bifurcations: example of supercritical and subcritical Hopf
	bifurcations. One dimensional iterative maps. The logistic equation, the
	logistic map and its properties: period doubling and the road to chaos.
Lecture 5 (FP) Jeudi 18 octobre 2018 16h-18h	Chaos and the Lorenz system. Revisiting stability of limit cycles and two-
	dimensional bifurcations. Poincaré-Bendixson theorem. Fourier properties of
	the logistic time series. Sensitivity to initial conditions in the logistic
	equation. Chaos and sensitivity to initial conditions in the Henon map. The
	points and stability. Brackdown of limit avalas. Poincaré soctions and the
	lorenz map. Chaos and sensitivity to initial conditions in the Lorenz system
Lecture 5 (EP)	Complexity and non-linear dynamics in faults and earthquakes Scaling
Jeudi 25 octobre 2018	in faults and fractures Earthquake models and Burridge-Knopoff non-linear
16h-19h	system. Friction dynamics and heuristic models of the earthquake cycle.
	Introduction to the science of complex systems. Presentation of the
Lecture 6 (CN) Jeudi 8 novembre 2018	science of complex systems at the interface between dynamical
	systems theory and statistical mechanics. Complementarity between
	deterministic and stochastic models. What are the appropriate length
	and time scales for modeling? Presentation of reduced complexity
	models.
	Hierarchical systems in geophysics. Critical phenomena and scale
Lecture 7 (CN) Jeudi 15 novembre 2018 16h-18h	invariance. The origin of power laws in geophysics. The real-space
	renormalization group approach. Example 1: the temporal properties of
	seismicity. Example 2: Turbulence and geodynamo.
Lecture 8 (CN)	Self-organization and the emergence of patterns. Self-organization
Jeudi 22 novembre 2018	in non-equilibrium systems. Emergence of structures in geophysical
16h-18h	systems.
Lecture 9 (CN)	Sediment transport and geomorphic processes. Sediment transport
Jeudi 29 novembre 2018	and surface flow. Landscape dynamics. Dune morphogenesis.
16h-18h	
Lecture 10 (FP/CN)	Discussion and and accordations
16h-18h	Discussion and oral presentations.
xx janvier 2019	M2 written exam
xxh-xxh	